3.46 \(\int \frac{(a^2+2 a b x^3+b^2 x^6)^{3/2}}{x^{14}} \, dx\)

Optimal. Leaf size=167 \[ -\frac{a^3 \sqrt{a^2+2 a b x^3+b^2 x^6}}{13 x^{13} \left (a+b x^3\right )}-\frac{3 a^2 b \sqrt{a^2+2 a b x^3+b^2 x^6}}{10 x^{10} \left (a+b x^3\right )}-\frac{3 a b^2 \sqrt{a^2+2 a b x^3+b^2 x^6}}{7 x^7 \left (a+b x^3\right )}-\frac{b^3 \sqrt{a^2+2 a b x^3+b^2 x^6}}{4 x^4 \left (a+b x^3\right )} \]

[Out]

-(a^3*Sqrt[a^2 + 2*a*b*x^3 + b^2*x^6])/(13*x^13*(a + b*x^3)) - (3*a^2*b*Sqrt[a^2 + 2*a*b*x^3 + b^2*x^6])/(10*x
^10*(a + b*x^3)) - (3*a*b^2*Sqrt[a^2 + 2*a*b*x^3 + b^2*x^6])/(7*x^7*(a + b*x^3)) - (b^3*Sqrt[a^2 + 2*a*b*x^3 +
 b^2*x^6])/(4*x^4*(a + b*x^3))

________________________________________________________________________________________

Rubi [A]  time = 0.0412958, antiderivative size = 167, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 26, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.077, Rules used = {1355, 270} \[ -\frac{a^3 \sqrt{a^2+2 a b x^3+b^2 x^6}}{13 x^{13} \left (a+b x^3\right )}-\frac{3 a^2 b \sqrt{a^2+2 a b x^3+b^2 x^6}}{10 x^{10} \left (a+b x^3\right )}-\frac{3 a b^2 \sqrt{a^2+2 a b x^3+b^2 x^6}}{7 x^7 \left (a+b x^3\right )}-\frac{b^3 \sqrt{a^2+2 a b x^3+b^2 x^6}}{4 x^4 \left (a+b x^3\right )} \]

Antiderivative was successfully verified.

[In]

Int[(a^2 + 2*a*b*x^3 + b^2*x^6)^(3/2)/x^14,x]

[Out]

-(a^3*Sqrt[a^2 + 2*a*b*x^3 + b^2*x^6])/(13*x^13*(a + b*x^3)) - (3*a^2*b*Sqrt[a^2 + 2*a*b*x^3 + b^2*x^6])/(10*x
^10*(a + b*x^3)) - (3*a*b^2*Sqrt[a^2 + 2*a*b*x^3 + b^2*x^6])/(7*x^7*(a + b*x^3)) - (b^3*Sqrt[a^2 + 2*a*b*x^3 +
 b^2*x^6])/(4*x^4*(a + b*x^3))

Rule 1355

Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.))^(p_), x_Symbol] :> Dist[(a + b*x^n + c*x^
(2*n))^FracPart[p]/(c^IntPart[p]*(b/2 + c*x^n)^(2*FracPart[p])), Int[(d*x)^m*(b/2 + c*x^n)^(2*p), x], x] /; Fr
eeQ[{a, b, c, d, m, n, p}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p - 1/2]

Rule 270

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
 x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]

Rubi steps

\begin{align*} \int \frac{\left (a^2+2 a b x^3+b^2 x^6\right )^{3/2}}{x^{14}} \, dx &=\frac{\sqrt{a^2+2 a b x^3+b^2 x^6} \int \frac{\left (a b+b^2 x^3\right )^3}{x^{14}} \, dx}{b^2 \left (a b+b^2 x^3\right )}\\ &=\frac{\sqrt{a^2+2 a b x^3+b^2 x^6} \int \left (\frac{a^3 b^3}{x^{14}}+\frac{3 a^2 b^4}{x^{11}}+\frac{3 a b^5}{x^8}+\frac{b^6}{x^5}\right ) \, dx}{b^2 \left (a b+b^2 x^3\right )}\\ &=-\frac{a^3 \sqrt{a^2+2 a b x^3+b^2 x^6}}{13 x^{13} \left (a+b x^3\right )}-\frac{3 a^2 b \sqrt{a^2+2 a b x^3+b^2 x^6}}{10 x^{10} \left (a+b x^3\right )}-\frac{3 a b^2 \sqrt{a^2+2 a b x^3+b^2 x^6}}{7 x^7 \left (a+b x^3\right )}-\frac{b^3 \sqrt{a^2+2 a b x^3+b^2 x^6}}{4 x^4 \left (a+b x^3\right )}\\ \end{align*}

Mathematica [A]  time = 0.0135445, size = 61, normalized size = 0.37 \[ -\frac{\sqrt{\left (a+b x^3\right )^2} \left (546 a^2 b x^3+140 a^3+780 a b^2 x^6+455 b^3 x^9\right )}{1820 x^{13} \left (a+b x^3\right )} \]

Antiderivative was successfully verified.

[In]

Integrate[(a^2 + 2*a*b*x^3 + b^2*x^6)^(3/2)/x^14,x]

[Out]

-(Sqrt[(a + b*x^3)^2]*(140*a^3 + 546*a^2*b*x^3 + 780*a*b^2*x^6 + 455*b^3*x^9))/(1820*x^13*(a + b*x^3))

________________________________________________________________________________________

Maple [A]  time = 0.006, size = 58, normalized size = 0.4 \begin{align*} -{\frac{455\,{b}^{3}{x}^{9}+780\,a{b}^{2}{x}^{6}+546\,{a}^{2}b{x}^{3}+140\,{a}^{3}}{1820\,{x}^{13} \left ( b{x}^{3}+a \right ) ^{3}} \left ( \left ( b{x}^{3}+a \right ) ^{2} \right ) ^{{\frac{3}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b^2*x^6+2*a*b*x^3+a^2)^(3/2)/x^14,x)

[Out]

-1/1820*(455*b^3*x^9+780*a*b^2*x^6+546*a^2*b*x^3+140*a^3)*((b*x^3+a)^2)^(3/2)/x^13/(b*x^3+a)^3

________________________________________________________________________________________

Maxima [A]  time = 1.07021, size = 50, normalized size = 0.3 \begin{align*} -\frac{455 \, b^{3} x^{9} + 780 \, a b^{2} x^{6} + 546 \, a^{2} b x^{3} + 140 \, a^{3}}{1820 \, x^{13}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^6+2*a*b*x^3+a^2)^(3/2)/x^14,x, algorithm="maxima")

[Out]

-1/1820*(455*b^3*x^9 + 780*a*b^2*x^6 + 546*a^2*b*x^3 + 140*a^3)/x^13

________________________________________________________________________________________

Fricas [A]  time = 1.76716, size = 95, normalized size = 0.57 \begin{align*} -\frac{455 \, b^{3} x^{9} + 780 \, a b^{2} x^{6} + 546 \, a^{2} b x^{3} + 140 \, a^{3}}{1820 \, x^{13}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^6+2*a*b*x^3+a^2)^(3/2)/x^14,x, algorithm="fricas")

[Out]

-1/1820*(455*b^3*x^9 + 780*a*b^2*x^6 + 546*a^2*b*x^3 + 140*a^3)/x^13

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (\left (a + b x^{3}\right )^{2}\right )^{\frac{3}{2}}}{x^{14}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b**2*x**6+2*a*b*x**3+a**2)**(3/2)/x**14,x)

[Out]

Integral(((a + b*x**3)**2)**(3/2)/x**14, x)

________________________________________________________________________________________

Giac [A]  time = 1.12411, size = 93, normalized size = 0.56 \begin{align*} -\frac{455 \, b^{3} x^{9} \mathrm{sgn}\left (b x^{3} + a\right ) + 780 \, a b^{2} x^{6} \mathrm{sgn}\left (b x^{3} + a\right ) + 546 \, a^{2} b x^{3} \mathrm{sgn}\left (b x^{3} + a\right ) + 140 \, a^{3} \mathrm{sgn}\left (b x^{3} + a\right )}{1820 \, x^{13}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b^2*x^6+2*a*b*x^3+a^2)^(3/2)/x^14,x, algorithm="giac")

[Out]

-1/1820*(455*b^3*x^9*sgn(b*x^3 + a) + 780*a*b^2*x^6*sgn(b*x^3 + a) + 546*a^2*b*x^3*sgn(b*x^3 + a) + 140*a^3*sg
n(b*x^3 + a))/x^13